
www.manaraa.com

The Temporal Dimension in End User
Web Programming

 Abstract
Despite the dynamic nature of the Web, most people
view a static snapshot. Search engines, browsers, and
higher level end-user programming environments only
support observing and manipulating a single point in
time—the “now.” We propose that moving beyond this
static viewpoint is important because a) maintaining a
temporal view of the Web allows users to more clearly
understand the behavior of their “programs” both in
static and dynamic contexts and b) temporally
changing information on the Web is interesting in its
own right. In this paper we discuss the opportunities
and challenges of integrating the temporal dimension in
end-user programming environments and our
experiences with Zoetrope, a tool for interacting with
the ephemeral (i.e. dynamic) Web.

Introduction
Despite its dynamic nature, most interaction with the
Web is primarily through a static snapshot—the Now
Web. The Now Web is the view experienced through
browsers, search engines, and most other end-user
tools. This static version, as depicted in Figure 1,
reflects the “current” version of all pages (e.g., CNN’s
current home page, the current traffic conditions
between Seattle and Redmond, or the current bid price
for a particular item on E-bay).

Copyright is held by the author/owner(s).

CHI 2009….

Eytan Adar

University of Washington, CSE

101 Paul G. Allen Center

Seattle, WA 98195

eadar@cs.washington.edu

Mira Dontcheva

Advanced Technology Labs

Adobe Systems

San Francisco, CA 94103

mirad@adobe.com

James Fogarty

University of Washington, CSE

101 Paul G. Allen Center

Seattle, WA 98195

jfogarty@cs.washington.edu

Daniel S. Weld

University of Washington, CSE

101 Paul G. Allen Center

Seattle, WA 98195

weld@cs.washington.edu

www.manaraa.com

 2

By concentrating on the current snapshot, our Web
tools and services largely ignore, or worse, discard
historical versions of pages, thereby losing the
temporal data itself (e.g., historical Amazon sales rank,
traffic conditions, and webcam data). Thus, any
historical versions of the Web become ephemeral as
data irretrievably vanishes from the Web. For example,
in Figure 1, any extraction before time t (the Now) on
Web page 3 will be impossible unless the user had the
foresight to crawl and archive the information.

As importantly, by failing to maintain past versions of
pages, systems squander valuable training and testing
data for end user programs and applications. By
testing on the historical Web, programs intended to
function both in the Now and in the future can be
improved to identify and address possible failures. In
Figure 1, for example, we note three different
templates for page 3. Crafting an extraction or
program solely on the current template (2) would result
in a failure when the page switches to a new template.

In this paper we propose that the maintenance of
historical Web versions can provide a powerful resource
for engineering and improving the robustness of end-
user programs on the Now Web. Zoetrope [1], a first
prototype in this space, is a tool for interacting with the
ephemeral Web. Though originally intended to address
the issue of lost temporal data, the design of Zoetrope
also illustrates the use of historical information to
provide increased robustness in user programs and
queries. We believe that the interaction techniques,
widgets, and architecture of Zoetrope have implications
for a broader set of tools and end-user programming
environments. However, the use of this historical Web
requires answering a number of research questions.

Although the historical Web represents a tremendous,
untapped resource, breaking away from the familiar
Now introduces an equally great challenge in leveraging
historical information in an effective and intuitive way.

Zoetrope background
When someone is interested in finding how a particular
piece of Web information has changed over time, they
hope that someone has collected the data and made it
searchable and available. While such historical data
might be hard to find, it is likely easier to specify. We
believe that a user will likely more rapidly identify the
present version of that information. Thus, we designed
Zoetrope that allows users to specify the data of
interest from within the context of the Now version.
Zoetrope supports this type of interaction and allows
users to visually select any information on a webpage
though a widget we call a lens (see Figure 2).
Abstractly, a lens defines a query—specified visually as
a rectangular widget—over the history of the page,
which is maintained in a specialized index. Extracting
the data contained in the lens, at every time step,
Zoetrope reconstructs (and visualizes) a time series.

This functionality is implemented with a rapid crawling
system (i.e. hourly downloads) that captures the “true”
state of the page (saving all included images and
content and freezing the DOM structure of the
document) by running a modified Firefox browser in a
server configuration. Through this dense sequence of
historical page snapshots, users can reconstitute a fine-
grained time series for the data of interest. By
maintaining historical records of pages and data, end-
user tools, such as Zoetrope, can better support
information needs that extend beyond the Now Web.

Figure 1. A view of the Now Web
in the context of the Web’s past
and future.

www.manaraa.com

 3

Learning from the Past
A key feature of Zoetrope is the interactive specification
of information of interest. Users can simply draw a lens
anywhere on a webpage and track the data throughout
the history of that page. Depending on how the
information moves (or doesn’t), different lenses
support the tracking of visually stable, structurally
stable, or content stable data. Visually stable
information appears in the same location on the
rendered page. Structurally stable information appears
in the same place in the DOM tree. Finally, content-
stable information may move on the page or within the
DOM but does not vary significantly in terms of content
(e.g., the Boston Red Sox’s ranking in a list of teams
may vary over the season, but the row corresponding
to this information will always say “Boston Red Sox”).

EXAMPLE GENERATION
A key component of the Zoetrope lens is a slider at the
top of every selection that allows a user to instantly flip
the selection to a different time. This interaction
technique makes it possible for the user to instantly
simulate and understand the behavior of a query over
time. While originally designed for extracting historical
data, lenses are also appealing in other automated
PBD/end-user programming scenarios as they can
quickly define many training examples by selecting
entire ranges, or individual instances, of valid
extractions. As obtaining sufficient training examples is
a key problem for automated PDB systems [4], such
tools can benefit from historical example generation.

INCREASING ROBUSTNESS
The robustness of end-user programs on the Web is a
recognized problem (e.g., [2, 5]) as page templates will
likely change at some point [3] causing the program to

fail. Because users can interactively detect failures in
the extraction, they may refine their selection, adding
or removing restrictions, improving filtering conditions
or creating another lens for the “failed” interval. The
interesting side-effect of the Zoetrope interaction
techniques is that although the user may not know how
the extraction will fail in the future, they may
nonetheless improve the robustness of their extractions
by observing failures in the past. Figure 3, for
example, depicts the failure of an extraction at some
past time point. As the user moves the slider, he finds
that in the last state (d) the selection no longer
includes the desired data.

Users, as constructors of these programs and
extractions, have a unique ability to determine if a
program has succeeded. By simulating the program—
whether an extraction, or something more
sophisticated—on historical data, the programmer can
identify failure conditions that may recur in the future
and increase the robustness of his programs. User
specified failures also give the system an opportunity to
automatically adjust its behavior. For example, by
identifying a failure on past data, the user is providing
examples to the system, which can be used to train a
failure detection mechanism. Supplying a “fix” to this
failure can help train exception handling mechanisms
that will allow a program to continue working or
adapting despite future changes to page structure.

Creating a system to store historical Web data, an
environment to simulate end-user programs, and
creating an appropriate interface to visualize and debug
failures will likely require expanding and modifying
Zoetrope’s behaviors and raises a number of interesting
research questions for the future.

Figure 2. The anatomy of a lens

Figure 3. The detection of a failed
extraction of the temperature (d)

www.manaraa.com

 4

Research Questions
Although there are many appealing reasons to support
the temporal dimension in Web based end-user
programs, there are a number of research issues to
address. These include:

Data collection — collecting and storing large sets of
temporal data will require new mechanisms for
crawling. Although the number of pages that contain
useful temporal data might be limited, new systems—
possibly a combination of server and P2P—will need to
be designed.

Dynamic data and services — Zoetrope is currently
targeted at pages that are not dynamically generated
(i.e., not the output of form submission). Many end-
user programming tasks require submitting input
through forms. One might envision that the modified
crawling system could contain not just URLs, but also
form submission arguments, which may be determined
automatically. Nonetheless, when utilizing historical
data it is important to consider the implications of
mixing live services with historical archives or
combining data from pages crawled at different times.
For example, converting a list of stock prices from a
week ago using the Dollar Yen conversion tool from
today will result in invalid data. While such results are
still useful for simulating system behavior, it is
important to recognize and help users understand
situations in which data is “invalid.”

Interfaces and representation — Users are
comfortable with the Now Web, a familiar and generally
unambiguous view of the Web. Introducing time into
the interface requires careful consideration of how
users might interact with such data. Zoetrope’s in-

context lens system, while appealing in many ways,
allows users to create a view of a page that never
existed by setting different lens sliders to different time
points. Providing proper affordances and interfaces is
crucial for allowing users to properly navigate beyond
the Now.

Conclusions
The World Wide Web is generally treated by users and
system designers as a single snapshot in time. This
limited view ignores the importance of temporal data
and the potential benefits of maintaining a Web history.
By considering the past, end-user programming
environments can be enhanced for the future. In this
work we have suggested how the components of one
temporal system, Zoetrope, can be adapted for use in
other situations. In particular, the use of in-context
selection lenses allows users to rapidly create examples
and enhance the robustness of their programs by
labeling examples and fixing errors. The ability to
simulate programs on historical data can lead to
improved performance but requires additional thought
on how such data can be collected, retained, and used.

References
1. Adar, E., Dontcheva, M., Fogarty, J., Weld, D.: Zoetrope:

Interacting with the Ephemeral Web. UIST 2008 (2008)

2. Bolin, M., Rha, P., Miller, R.C.: Automation and customization of

rendered web pages. UIST 2005 (2005) 163-172

3. Dontcheva, M., Drucker, S.M., Salesin, D., Cohen, M.F.:

Changes in Webpage Structure over Time. (2007)

4. Lau, T.: Why PBD systems fail: Lessons learned for usable AI.

CHI 2008 Workshop on Usable AI (2008)

5. Leshed, G., Haber, E., Matthews, T., Lau, T.: CoScripter:

automating & sharing how-to knowledge in the enterprise. CHI

2008 (2008)

